LOTUS: An Algorithm for Building Accurate and Comprehensible Logistic Regression Trees

نویسندگان

  • Kin-Yee CHAN
  • Wei-Yin LOH
چکیده

Logistic regression is a powerful technique for fitting models to data with a binary response variable, but the models are difficult to interpret if collinearity, nonlinearity, or interactions are present. Besides, it is hard to judge model adequacy because there are few diagnostics for choosing variable transformations and no true goodness-of-fit test. To overcome these problems, this article proposes to fit a piecewise (multiple or simple) linear logistic regression model by recursively partitioning the data and fitting a different logistic regression in each partition. This allows nonlinear features of the data to be modeled without requiring variable transformations. The binary tree that results from the partitioning process is pruned to minimize a cross-validation estimate of the predicted deviance. This obviates the need for a formal goodness-of-fit test. The resulting model is especially easy to interpret if a simple linear logistic regression is fitted to each partition, because the tree structure and the set of graphs of the fitted functions in the partitions comprise a complete visual description of the model. Trend-adjusted chi-square tests are used to control bias in variable selection at the intermediate nodes. This protects the integrity of inferences drawn from the tree structure. The method is compared with standard stepwise logistic regression on 30 real datasets, with several containing tens to hundreds of thousands of observations. Averaged across the datasets, the results show that the method reduces predicted mean deviance by 9% to 16%. We use an example from the Dutch insurance industry to demonstrate how the method can identify and produce an intelligible profile of prospective customers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Comprehensible Models from Trained Neural Networks

Although neural networks have been used to develop highly accurate classifiers in numerous real-world problem domains, the models they learn are notoriously difficult to understand. This thesis investigates the task of extracting comprehensible models from trained neural networks, thereby alleviating this limitation. The primary contribution of the thesis is an algorithm that overcomes the sign...

متن کامل

A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining

Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...

متن کامل

Factors Influencing Drug Injection History among Prisoners: A Comparison between Classification and Regression Trees and Logistic Regression Analysis

Background: Due to the importance of medical studies, researchers of this field should be familiar with various types of statistical analyses to select the most appropriate method based on the characteristics of their data sets. Classification and regression trees (CARTs) can be as complementary to regression models. We compared the performance of a logistic regression model and a CART in predi...

متن کامل

Does segmentation always improve model performance in credit scoring?

Credit scoring allows for the credit risk assessment of bank customers. A single scoring model (scorecard) can be developed for the entire customer population, e.g. using logistic regression. However, it is often expected that segmentation, i.e. dividing the population into several groups and building separate scorecards for them, will improve the model performance. The most common statistical ...

متن کامل

Logistic Regression Tree Analysis

This chapter describes a tree-structured extension and generalization of the logistic regression method for fitting models to a binary-valued response variable. The technique overcomes a significant disadvantage of logistic regression, which is interpretability of the model in the face of multicollinearity and Simpson’s paradox. Section 1 summarizes the statistical theory underlying the logisti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004